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Abstract. In this paper, I present a detailed theoretical study of electron–photon–phonon
interactions in three-dimensional electron gases (3DEGs) subjected to linearly polarized intense
electromagnetic (EM) radiations. Applying the solution of the time-dependent Schrödinger
equation, in which the effect of the EM radiation field is included exactly, to time-dependent
perturbation theory, I have developed a novel approach for determining the probabilities of
steady-state electronic transitions induced by electron–photon–phonon interactions in a 3DEG
system. For the case of polar semiconductors, I have discussed the influence of the linearly
polarized intense laser radiation on the electronic scattering rate for electron interactions with
the radiation field and with the LO phonons. These results are pertinent to the application of
recently developed terahertz or far-infrared laser sources such as free-electron lasers.

1. Introduction

In recent years, there has been a rapid expansion worldwide in developing coherent, high-
power, long-wavelength and tunable electromagnetic (EM) radiation sources such as free-
electron lasers (FELs). The FELs are generated via passing an intense beam of relativistic
electrons through periodic magnetic fields and can provide linearly polarized laser radiations.
The current generation of the FELs, in operation in, e.g., UCSB [1–3] and FELIX [4–6],
has already been able to provide a tunable source of intense laser radiations in the terahertz
(THz) or far-infrared (FIR) bandwidth. Since 1995 [1, 5], the THz FEL radiations have been
successfully applied in scientific research into non-linear transport and optical properties in
different semiconductor devices.

The significant impact of intense THz laser radiations provided by FELs on semi-
conductor physics and electronics can be understood by considering the fact that when an
electron gas, realized in, e.g., a semiconductor, is subjected to an intense THz EM field, the
electron kinetic energy, the Fermi energy, the phonon energy, the plasmon energy etc in the
system are comparable to the energy of the THz photons and to that of the radiation field.
As a result, the applied THz EM field can couple strongly to the electronic system. In this
situation, the electrons can interact with the radiation field via emission and absorption of
THz photons. Furthermore, for a THz-driven electron gas in a semiconductor device, the
rate of scattering induced by electron interactions with impurities and phonons can be of
the same order as the THz photon frequency [7]. This implies that the THz radiations can
significantly modify the processes of momentum and energy relaxation for excited electrons
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in the device system. Very recently, some important and interesting THz phenomena,
such as resonant absorption of THz radiations [1], the THz-radiation-enhanced hot-electron
effect [2], THz-photon-induced impact ionization [3], the LO-phonon bottleneck effect [4],
THz-photon-assisted resonant tunnelling [5] and FIR cyclotron resonance [6] have been
observed experimentally in different semiconductor structures using FEL radiations. When
a polar semiconductor such as GaAs is subjected to an intense THz EM field, optical
excitation of electrons can occur. Due to the presence of the strong phonon oscillation
modes and to the comparability of the frequencies of the phonons and photons, the electron–
phonon interaction is the principal channel for relaxation of the excited electrons in a
polar semiconductor. The results obtained from experimental measurements in [1, 2, 4, 6]
have indicated that phonons play an important role in non-linear transport and the optical
properties observed for THz-driven electron gases.

The brief review given above shows that in order to achieve a better understanding
of the experimental results reported very recently, more theoretical work on electron–
photon–phonon interactions in an electron gas system, in particular for GaAs-based
systems subjected to intense THz FEL radiations, is required. In the past, most
theoretical approaches dealing with electron–photon–phonon interactions [8, 9] were based
on separate Hamiltonians which describe respectively the electron–phonon and electron–
photon interactions. It can be demonstrated, as can be seen in this paper, that this approach
can only be used for the case of high-frequency and/or low-intensity EM radiations. In
this paper, I develop a rather simple theoretical approach by means of which one can
easily study the electron–photon–phonon interactions over a wide radiation intensity and
frequency range. This approach has gone beyond the conventional treatment for electron–
photon–phonon interactions in semiconductor systems in the presence of radiation fields.
In section 2, I examine the properties of the unitary operator for an ideal 3DEG in the
presence of the EM radiations, using time-dependent perturbation theory. With the unitary
operator obtained for the system in the presence of the scattering potential, the first-order
contribution to the probability of steady-state electronic transitions, induced by electron–
photon–phonon coupling, is obtained in section 3. In section 4, I discuss the influence of the
intensity and frequency of the FEL radiation on the rate of electronic scattering caused by
interactions of electrons with photons and with LO phonons in GaAs-based 3DEG systems.
The conclusions obtained from the present study are summarized in section 5.

2. The unitary operator

In this paper, I consider an electronic system which can be described by a single-electron
Hamiltonian: H(t) = H0(t) + V (t), whereV (t) can be treated as a perturbation. For
an ideal 3DEG system subjected to an EM radiation field polarized along thex-axis, the
Hamiltonian for a non-interacting electron can be written as

H0(t) =
[px − eA(t)]2+ p2

y + p2
z

2m∗
. (1a)

Here: (i) a parabolic-conduction-band structure has been included; (ii)px = −i h̄ ∂/∂x is
the momentum operator; (iii)A(t) is the vector potential induced by the EM radiation;
(iv) m∗ is the effective electron mass. Furthermore, I have used the Coulomb gauge [10] to
describe the EM radiation field. After using the dipole approximation for the radiation field
and takingA(t) = A0 sin(ωt), with ω being the frequency of the EM field, the solution of
the time-dependent Schrödinger equation, i ¯h ∂ψ(R, t)/∂t = H0(t)ψ(R, t), is obtained as

|K; t〉 = ψK(R, t) = |K; 0〉e−i[E(K)+2γ h̄ω]t/h̄eir0kx [1−cos(ωt)]eiγ sin(2ωt) (1b)
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where |K; 0〉 = |K〉 = eiK·R is the electron wavefunction at timet = 0, R = (x, y, z),
K = (kx, ky, kz) is the electron wavevector,E(K) = h̄2K2/2m∗ is the electronic energy
spectrum for an ideal 3DEG,r0 = eE0/(m

∗ω2) with E0 being the strength of the radiation
electric field,γ = (eE0)

2/(8m∗h̄ω3) and 2γ h̄ω is the energy of the radiation field. I have
used the relationE(t) = ∂A(t)/∂t = (E0 cos(ωt), 0, 0) with E0 = ωA0. Furthermore,
in the presence of the EM radiation, due to the dynamical Franz–Keldysh effect [11], the
energy of the electronic system becomesE = h̄2K2/2m∗ + 2γ h̄ω, shifted by 2γ h̄ω, the
energy of the radiation field.

Equation (1) indicates that in the presence of the EM radiation field, the electron
wavefunction in a 3DEG can be separated into the space-dependent part and the time-
dependent part, which implies that|K〉 is a dynamical state and is electronically analogous
to an eigenstatewhereK is the quantum number. In the(K, t) representation, the
unitary operator in the absence of a scattering potential can be defined through|K; t〉 =
U0(t, t

′)|K; t ′〉 with the initial conditionU0(t
′, t ′) = 1. Thus, in the presence of the EM

radiation field, the unitary operatorU0(t, t
′) can be written as

U0(t, t
′) = e−i[E(K)+2γ h̄ω](t−t ′)/h̄e−ir0kx [cos(ωt)−cos(ωt ′)]eiγ [sin(2ωt)−sin(2ωt ′)] (2)

which describes the evolution over time of a dynamical state|K〉 of the electronic system
in the Schr̈odinger representation. Like in the case in the absence of the radiation field [12],
the unitary operator obtained here has the following features:

U ∗0 (t, t
′) = U0(t

′, t) = U−1
0 (t, t ′) (3a)

U0(t, t
′)U ∗0 (t, t

′) = U ∗0 (t, t ′)U0(t, t
′) = 1 (3b)

and the composition law

U0(t, t
′′)U0(t

′′, t ′) = U0(t, t
′). (3c)

Furthermore, the unitary operator satisfies

i h̄
∂U0(t, t

′)
∂t

= H0(t)U0(t, t
′) (4)

whereH0(t) = [h̄K − eA(t)]2/2m∗ in the (K, t) representation.
In the presence of the time-dependent scattering potentialV (t), the unitary operator

U(t, t ′) should satisfy

i h̄
∂U(t, t ′)
∂t

= H(t)U(t, t ′) (5)

in (K, t) space. SinceU0(t, t
′) is known,U(t, t ′) can be determined from the operator

UI (t, t
′) = U∗0 (t, t ′)U(t, t ′) (6)

which is the evolution operator for the dynamical states in the interaction representation and
satisfies

i h̄
∂UI (t, t

′)
∂t

= VI (t)UI (t, t ′) (7a)

with the initial conditionUI (t ′, t ′) = 1, and

UI (t, t
′) = 1+ (i h̄)−1

∫ t

t ′
dτ VI (τ )UI (τ, t

′). (7b)

Here,

VI (t) = U∗0 (t, t ′)V (t)U0(t, t
′). (7c)



6108 W Xu

Like in the case in the absence of the scattering mechanism,UI (t, t
′) obtained here has all

of the properties of an evolution operator.
The integral equation given by equation (7b) can be solved by using the iteration

approach, which reads as follows:

UI (t, t
′) =

∞∑
n=0

U
(n)
I (t, t ′) (8a)

whereU(0)
I (t, t ′) = 1 and

U
(n)
I (t, t ′) = (i h̄)−n

∫
t>τn>τn−1>···>τ1>t ′

dτn dτn−1 · · · dτ1 VI (τn)V (τn−1) · · ·VI (τ1). (8b)

Introducing equation (6) and equation (3a) into equation (8), the unitary operator for an
electron gas under the EM radiations is obtained, in the presence of a scattering potential,
from

U(t, t ′) =
∞∑
n=0

U(n)(t, t ′) (9a)

whereU(0)(t, t ′) = U0(t, t
′) and

U(n)(t, t ′) = (i h̄)−n
∫
t>τn>τn−1>···>τ1>t ′

dτn dτn−1 · · · dτ1 U0(t, τn)V (τn)

× U0(τn, τn−1)V (τn−1) · · ·U0(τ2, τ1)V (τ1)U0(τ1, t
′). (9b)

The expansions given by equation (8) and equation (9) are power series inV (t). They
converge more rapidly the closerU(t, t) is to U0(t, t

′) (or the smaller|V (t)| is). The
theoretical approach used here is a generalization of the time-dependent perturbation theory
[12] to the case in the presence of a time-dependent driving field such as an EM radiation.
U(0) represents the zero-order approximation;U(1), U(2), . . . , U(n) are, respectively, the
corrections of order 1, 2, . . . , n to that approximation due to the presence of the scattering
potential.

3. The transition probability

With the unitary operator given by equation (9), we can calculate the probability amplitude
induced by the presence of the scattering potentialV (t) in an electron gas subjected to an
EM radiation field. Noting thatU0(τn, τn−1) describes the time evolution of a dynamical
state|Kn〉 of the electronic system, the probability amplitude for an electronic transition
from an initial state|K〉 to a final state|K ′〉 can be calculated via

〈K ′|U(t, t ′)|K〉 =
∞∑
n=0

〈K ′|U(n)(t, t ′)|K〉. (10)

After assuming that the perturbation Hamiltonian is given byV (t) = Hjeiωj t , whereHj is
time independent andωj is the characteristic frequency for thej th scattering potential, the
contributions, in successive orders, to the probability amplitude in the{H0(t)} representation
are obtained as

〈K ′|U(0)(t, t ′)|K〉 = RK ′K(t ′, t)δK ′,K (11a)

〈K ′|U(1)(t, t ′)|K〉 = RK ′K(t ′, t)VK
′K

i h̄

∫ t

t ′
dτ1 SK ′K(τ1) (11b)
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〈K ′|U(2)(t, t ′)|K〉 = RK ′K(t ′, t)
∑
K1

VK ′K1VK1K

(i h̄)2

∫ t

t ′
dτ1

∫ τ1

t ′
dτ2 SK ′K1(τ1)SK1K(τ2)

(11c)

and

〈K ′|U(n)(t, t ′)|K〉 = RK ′K(t ′, t)
∑

K1,K2,...,Kn−1

VK ′K1VK1K2 · · ·VKn−1K

(i h̄)n

×
∫ t

t ′
dτ1

∫ τ1

t ′
dτ2 · · ·

∫ τn−1

t ′
dτn SK ′K1(τ1)SK1K2(τ2) · · · SKn−1K(τn).

(11d)

Here,

VK ′K = 〈K ′|Hj |K〉 (12a)

and

RK ′K(t
′, t) = U0(t, t

′)ei[E(K ′)−E(K)]t ′/h̄eir0(kx ′−kx) cos(ωt ′) (12b)

whereU0(t, t
′) is given by equation (2). Moreover,

SK ′K(t) = e−i[E(K ′)−E(K)−h̄ωj ]t/h̄e−ir0(kx ′−kx) cos(ωt)

=
∞∑

m=−∞
i−mJm(r0(kx ′ − kx))e−i[E(K ′)−E(K)−mh̄ω−h̄ωj ]t/h̄ (12c)

where the identity eiz cosx =∑∞m=−∞ imJm(z)eimx , with Jm(x) being a Bessel function, has
been used.

From equation (11a), we find |〈K ′|U(0)(t, t ′)|K〉| = δK ′,K , which implies that the
zero-order term does not contribute to the transition probability. Introducing equation (12c)
into equation (11b), the first-order contribution to the square of the probability amplitude
becomes

R1(τ, t
′) = |〈K ′|U(1)(t, t ′)|K〉|2 = |VK ′K |

2

h̄2

∑
m′,m

Jm(r0(kx
′ − kx))Jm′(r0(kx ′ − kx))

�m(K ′,K)�m′(K ′,K)

× im
′−mei(m−m′)ωt ′ [1− ei�m′ (K ′,K)τ − e−i�m(K ′,K)τ + ei(m−m′)ωτ ]. (13)

Hereτ = t− t ′ and�m(K ′,K) = [E(K ′)−E(K)−mh̄ω− h̄ωj ]/h̄. Hence, by definition,
the first-order contribution to the steady-state (i.e.,τ → +∞) transition rate for the scatt-
ering of an electron from a state|K〉 to a state|K ′〉 is obtained as

W(K ′,K) = lim
τ→+∞

∂R1(τ, t
′)

∂τ

= 2π

h̄
|〈K ′|Hj |K〉|2

∞∑
m=−∞

J 2
m(r0(k

′
x − kx))δ[E(K ′)− E(K)−mh̄ω − h̄ωj ].

(14)

For the case in whichE0→ 0 (and sor0→ 0), because limx→0 J
2
m(x) = δm,0, we have

lim
E0→0

W(K ′,K) = 2π

h̄
|〈K ′|Hj |K〉|2δ[E(K ′)− E(K)− h̄ωj ] (15)

which is the well-known result obtained in the absence of the EM field by using Fermi’s
golden rule.
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Normally, the analysis according to the time ‘centre of mass’ (i.e.,T = (t + t ′)/2) and
relative coordinates (i.e.,τ = t − t ′) can be employed to study time-dependent electronic
properties in an electron gas system. In a steady state (i.e., forτ → +∞), the first-order
transition rate obtained as equation (14) corresponds essentially to the fast approximation
[13]. For the case of an EM radiation field which is periodic in time, the use of the
generator eix cosy in the Bessel functions results in the complete spectrum of the square of
the probability amplitude (see equation (13)) being present in theτ -direction, and in only
the zeroth term ofR1(τ, t

′) existing in theT -direction (hereT = t ′). Consequently, when
only the first-order contribution is taken into consideration, the steady-state transition rate
is independent ofT and t ′.

It should be pointed out that the derivation shown above has followed the standard
approaches of the time-dependent perturbation theory [12]. For the case of an electron gas
driven by an EM field, a result identical to equation (14) can be obtained simply from a
popularly used phenomenological approach (see the appendix).

For electron–phonon interactions in an electron gas device, we may assume that the
system under study can be separated into the electron of interest and the rest of the crystal,
i.e., |K, c; t〉 = |K; t〉|c〉 where |c〉 represents the state of the crystal system. Moreover,
the electron–phonon interaction Hamiltonian can be taken in the form

Hj = VQ(aQeiQ·R + a†Qe−iQ·R)

whereQ = (qx, qy, qz) is the phonon wavevector,(a†Q, aQ) are the canonical conjugate
coordinates of the phonon system andVQ is the electron–phonon interaction coefficient.
After changingωj → ±ωQ, where the sign+ (−) refers to absorption (emission) of a
phonon with an energy ¯hωQ, the first-order steady-state transition rate for an electron–
photon–phonon system in a 3DEG device is obtained as

W±(K ′,K) = 2π

h̄

[
NQ

NQ + 1

]
|VQ|2δK ′,K+Q

∞∑
m=−∞

J 2
m(r0qx)

× δ[E(K ′)− E(K)−mh̄ω ∓ h̄ωQ] (16)

whereNQ = (ēhωQ/kBT − 1)−1 is the phonon occupation number.
When an electron gas is subjected to intense EM radiations, the electrons in the system

can interact with the radiation field via the channels of photon emission and absorption.
However, in the absence of the electronic scattering mechanism, the effect of direct optical
emission and absorption by electrons is very weak, due to the strictness of the selection rule
for these optical processes. When interactions between electrons and phonons are present,
the absorption and emission of photons can be mediated by electron–phonon scattering
events. Therefore, in an ideal 3DEG, photon emission and absorption by electrons are
indirect optical processes. In equation (16), the indexm corresponds to the process of
m-photon absorption (emission) whenm > 0 (m < 0), which implies that the electron–
photon–phonon interactions in a 3DEG may lead to emission and absorption of photons
via multiphoton channels. Equation (16) thus exhibits features specific to electron–photon–
phonon interactions in a 3DEG structure. I highlight the point that, in sharp contrast to the
isotropic transition rate obtained from using Fermi’s golden rule in the absence of the EM
field, the presence of the linearly polarized EM radiation results in an anisotropic electronic
transition rate, characterized by the dependence ofr0qx via a termJ 2

m(r0qx). The physical
reason behind the anisotropy of the electronic transition rate obtained here can be understood
by considering the fact that in the presence of a linearly polarized radiation, the EM field
polarized along a certain direction can break the symmetry of the sample geometry.
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For the case of high-frequency and/or low-intensity radiations, such thatr0qx � 1,
equation (16) can be written in the following form:

W±(K ′,K) ' 2π

h̄

[
NQ

NQ + 1

]
|VQ|2

∞∑
m=−∞

δK ′,K+Q
(|m|!)2

(
r0qx

2

)2|m|

× δ[E(K ′)− E(K)−mh̄ω ∓ h̄ωQ]. (17)

In the past, the interactions between electrons and phonons and also those between electrons
and photons were treated using separate interaction Hamiltonians [8, 9]. Using this approach,
the net effect of electron–phonon interactions in the presence of multiphoton processes can
be calculated using the second- or higher-order perturbation theory. The rate of transitions
induced by one-photon absorption process (i.e., bym = 1 alone) given by equation (17)
is identical to that obtained from using the second-order perturbation theory [9]. This
implies that the electron–photon interactions can only be treated as a perturbation when the
conditionr0qx � 1 is satisfied. From these results, one can see that the theoretical approach
used in this study is much more powerful in dealing with such problems as multiphoton
processes and, therefore, is much better than the previous treatment for electron–photon–
phonon interactions. For the case where the time-dependent Schrödinger equation, in which
the EM field is included, can be solved analytically, it is unnecessary to treat electron–
phonon and electron–photon interactions separately.

4. The electron–photon–phonon scattering rate

For polar semiconductors such as GaAs under intense THz laser irradiations, the electron
interaction with longitudinal optical (LO) phonons is the principal channel for relaxation
of optically excited electrons in the system. This can be seen from the facts that: (1) the
LO-phonon energy in GaAs is comparable to the energy of THz photons; (2) the rate of
electron–LO-phonon scattering can be on the same scale as the THz frequency [7]; (3) strong
LO-phonon modes are present in GaAs; (4) the electron–LO-phonon interactions can result
in an inelastic scattering and in a substantial energy transfer during electronic transitions.
Furthermore, for a GaAs-based electron gas system, the frequency of the acoustic phonons
associated with the deformation potential and piezoelectric oscillation modes is typically
aboutωQ/2π ∼ 0.1 THz [14]. Hence one would expect the electron interactions with
acoustic phonons to play an important role in relatively low-frequency and low-intensity
radiations. From now on, I limit myself to consideration of the situation of electron–photon–
phonon interactions via LO-phonon coupling.

4.1. Analytical results

In a polar semiconductor, the electron–LO-phonon interactions can be described by the
Fröhlich Hamiltonian, from which the coupling coefficient is given by

|VQ|2 = 4παL0(h̄ωLO)
2/Q2. (18)

Hereα is the electron–LO-phonon coupling constant,ωLO is the LO-phonon frequency in the
long-wavelength limit andL0 = (h̄/2m∗ωLO)

1/2 is the polaron radius. Furthermore, for LO-
phonon oscillation modes,ωQ ' ωLO in the long-wavelength range. Thus, the steady-state
electronic transition rate, due to the first-order contribution of electron–photon–LO-phonon
interactions, becomes
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W±(K ′,K) = 8π2αL0h̄ω
2
LO

[
N0

N0+ 1

]
δK ′,K+Q

∞∑
m=−∞

J 2
m(r0qx)

Q2

× δ[E(K ′)− E(K)−mh̄ω ∓ h̄ωLO] (19)

whereN0 = (ēhωLO/kBT −1)−1 is the LO-phonon occupation number. The rate for scattering
of an electron in a state|K〉, due to the first-order electron–photon–LO-phonon interaction,
is given by

λ±(K) =
∑
K ′
W(K ′,K) =

∞∑
m=−∞

2[Em(K)]λ
±
m(K) (20)

where the contribution due to them-photon process is

λ±m(K) = αωLO

[
N0

N0+ 1

] ∫ kxL0+E1/2
m (K)

kxL0−E1/2
m (K)

dx J 2
m(α0x)√

4x2(KL0)2+ 4x(kxL0)(mω̃ ± 1)+ (mω̃ ± 1)2
.

(21)

Here, 2(x) is the unit step function,ω̃ = ω/ωLO, Em(K) = (KL0)
2 + mω̃ ± 1 and

α0 = 2E0/(F0ω̃
2) with F0 = ωLO(2m∗h̄ωLO)

1/2/e being the polaron electric field.
From equation (20), we see that when the condition ¯h2K2/2m∗ + mh̄ω ± h̄ωLO > 0

is satisfied, the channel for electron–LO-phonon scattering via anm-photon process opens
up. In this case, the electron–phonon interaction via absorption and emission of phonons by
electrons can be accompanied by emission (m < 0) and absorption (m > 0) of photons. In
the presence of linearly polarized EM fields, due to the anisotropic transition probability, the
electron–photon–LO-phonon scattering rate is anisotropic and depends onkx , the electron
wavevector (or momentum) along the direction in which the radiation field is polarized.

4.2. The electro-photon–phonon resonance effect

For an electron gas system, the initial stateK = 0 is the electronic state most likely to be
occupied. The scattering rate for electron–photon–LO-phonon interactions in theK → 0
limit is given by

λ±(0) = 2αωLO

[
N0

N0+ 1

] ∞∑
m=−∞

2(mω̃ ± 1)

mω̃ ± 1

∫ √mω̃±1

0
dx J 2

m(α0x). (22)

This implies that in the presence of the EM radiations, the scattering channel for electron–
photon–phonon interactions without the assistance of initial electron momentum can open up
when the conditionmω > ∓ωLO is satisfied. This condition corresponds to the processes in
which an electron gains (loses) the energy from the radiation field via absorption (emission)
of photons and the electron loses (gains) the energy via emission (absorption) of phonons.
When the energy that an electron can gain from absorption of photons and phonons
is larger than the energy that the electron loses via emission of photons and phonons,
resonance scattering for electron–photon–phonon interactions becomes possible. This type
of electro-photon–phonon resonance (EPPR) is electronically analogous to the magneto-
phonon resonance (MPR) [15] and electro-phonon resonance (EPR) [16] observed in the
absence of an EM field and to the magneto-photon–phonon resonance (MPPR) [17] observed
in the presence of radiation fields and quantizing magnetic fields.

It should be noted that in the absence of the EM radiations, LO-phonon emission
scattering by an electron occurs only when ¯h2K2/2m∗, the electron kinetic energy, is larger
than h̄ωLO, the LO-phonon energy. In contrast, for an electron gas subjected to the EM
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Figure 1. The total scattering rate,λ(K) = λ+(K)+ λ−(K), for electron–photon–LO-phonon
interactions, as a function of the electron kinetic energy(KL0)

2 = (h̄2K2/2m∗)/h̄ωLO for
different anglesθ at a fixed lattice temperatureT and a fixed radiation field with intensityE0

and frequencyω. For GaAs,h̄ωLO = 36.6 meV andωLO = 55.6 THz. θ is the polar angle to
the x-axis andkx = K cosθ .

radiations, the LO-phonon emission scattering can be present even atK = 0. In this case,
an electron gains the energy from the radiation field via optical absorption and the EPPR
effect can be observed whenmω > ωLO. For the case of LO-phonon absorption scattering,
the EPPR effect can be observed viam-photon emission channels when−mω < ωLO. In
the presence of the intense EM radiations, the EPPR can occur via multiphoton channels.

4.3. Numerical results

The numerical results of this paper pertain to GaAs-based 3DEG structures. The material
parameters for GaAs are taken as: (1) the effective-electron-mass ratiom∗/me = 0.0665
with me the electron rest mass; (2) the electron–LO-phonon coupling constantα = 0.068;
(3) the LO-phonon energy ¯hωLO = 36.6 meV (i.e.,ωLO/2π = 8.85 THz). For GaAs,
the polaron radius isL0 = (h̄/2m∗ωLO)

1/2 = 39.5 Å and the polaron electric field
is F0 = ωLO(2m∗h̄ωLO)

1/2/e = 92.5 kV cm−1. In the calculations, the contributions
from m = 0,±1,±2, . . . ,±20 optical processes have been taken into consideration. The
inclusion of more multiphoton processes within the calculation affects only the results for
low-frequency radiations.

The total scattering rate for electron–photon–LO-phonon interactions as a function of
the electron kinetic energy for different anglesθ is shown in figure 1 at a fixed temperature
and for a fixed radiation field. Here I definekx = K cosθ and (k2

y + k2
z )

1/2 = K sinθ with
θ being the polar angle to thex-axis. At T = 77 K, the effect of LO-phonon absorption
scattering is relatively weak, due to the small LO-phonon occupation number. Therefore,
the scattering rate shown in figure 1 results mainly from LO-phonon emission scattering via
absorption of photons by electrons in the low-energy regime and via emission of photons in
the high-energy regime. In figure 1 the anisotropy for electron–photon–phonon interactions
in the presence of the intense EM radiation is evident. Figure 2 shows the contribution from
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Figure 2. The contributions from different optical processes to the total electron–photon–LO-
phonon scattering rate atθ = 0◦ for a fixed radiation field. Herem > 0 andm < 0 correspond,
respectively, to the processes of photon absorption and emission.

different optical processes to the total scattering rate atθ = 0◦. At a fixed radiation field, the
channel for electron–photon–LO-phonon scattering via LO-phonon emission accompanied
by anm-photon process opens up when the condition ¯h2K2/2m∗ + mh̄ω > h̄ωLO is satis-
fied. For the case in whichω = ωLO/4, the optical process of two-photon absorption
(one-photon absorption, zero-photon emission and one-photon emission) contributes to LO-
phonon emission scattering when the electron kinetic energy(KL0)

2 = (h̄2K2/2m∗)/h̄ωLO

is larger than 0.5 (0.75, 1 and 1.25), as can be seen in figure 2. With increasing electron
kinetic energy, because more optical channels for electron–phonon interactions become
accessible, the scattering rate increases. The non-monotonic increases inλ(K) with
increasingK2, observed in figures 1 and 2 when(KL0)

2 ∼ n/4 with n = 0, 1, 2, . . .,
correspond to the opening up of channels for different optical processes.

The influences of the radiation intensity and the radiation frequency on the electron–
photon–LO-phonon scattering rate atθ = 0◦ are shown, respectively, in figures 3 and
4. At a fixed radiation frequency, the scattering rate in the low-energy regime increases
with radiation intensity because of the enhancement of the strength of the photon absorption
scattering. In contrast to the case in the absence of the EM radiation (i.e., the case forE0 = 0
shown in figure 3, where the strong scattering is present when ¯h2K2/2m∗ > h̄ωLO), the
presence of the intense EM radiations can result in a strong LO-phonon emission scattering
in the energy regime where ¯h2K2/2m∗ < h̄ωLO due to the channels for photon absorption.
Within the relatively high-energy regime, the scattering rate decreases with increasing
radiation intensity (see figure 3). At a fixed radiation intensity, the scattering rate in the
low-energy regime increases with decreasing radiation frequency (see figure 4), because
more photon absorption processes are possible for lower-frequency radiations. Within the
relatively high-energy regime, the electron–photon–LO-phonon scattering rate decreases
with ω. For the case of high-frequency radiations (i.e., forω = ωLO, as shown in figure 4,
which looks similar to the case forE0 = 0 shown in figure 3), the EM radiation field
affects the electron–phonon scattering only very weakly. From equation (21), we see that
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Figure 3. The influence of the radiation intensityE0 on the total electron–photon–LO-phonon
scattering rate at a fixed radiation frequencyω for θ = 0◦. The case withE0 = 0 is that in the
absence of the radiation field.

Figure 4. The influence of the radiation frequency on the total electron–photon–LO-phonon
scattering rate for a fixed radiation intensity atθ = 0◦.

the stronger modification of the electron–photon–LO-phonon interactions by the radiation
field can be achieved whenα0 = 2(E0/F0)(ωLO/ω)

2 ∼ 1. For polar semiconductors, the
polaron electronic fieldF0 ∼ 100 kV cm−1 is very high. Therefore, a strong effect of the
radiation field on the electron–photon–LO-phonon interactions can only be observed for
a relatively low-frequency radiation for a fixed radiation intensity. Whenα0 � 1, since
limx→0 J

2
m(x) = δ0,m, only a zero-photon process contributes to the electron–photon–phonon

scattering.
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Figure 5. The total electron–photon–LO-phonon scattering rate atK = 0 as a function of the
radiation frequency for different radiation intensities.

Figure 6. The contributions from different optical processes to the total electron–photon–LO-
phonon scattering rate as functions of the radiation frequency for a fixed radiation intensity at
K = 0. Herem > 0 andm < 0 correspond, respectively, to the processes of photon absorption
and emission.

The electron–photon–LO-phonon scattering rate atK = 0 as a function of the radiation
frequency for different radiation intensities is shown in figure 5. AtT = 77 K and
for K = 0, the electron–photon–phonon interaction within the low-radiation-frequency
regime is mainly achieved via phonon emission accompanied by the absorption of photons.
With increasing radiation frequency, the channels for multiphoton absorption are closing
down (see figure 6) and, consequently, the total scattering rate decreases. As can be
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seen in figure 6, under high-frequency irradiations the scattering is due to the processes
of zero-photon and one-photon absorption. Under very high-frequency irradiations, the
electron–phonon coupling is mediated by the zero-photon process alone and the scattering
rate depends little on the radiation frequency (see figure 6). From figure 5, we see that
for low-intensity radiations (i.e.,E0 = 5 kV cm−1), the electron–LO-phonon interaction
depends weakly on the radiation frequency.

The dependence of the electron–photon–LO-phonon scattering rate forK = 0 on the
radiation intensity is shown in figure 7 for different radiation frequencies. With increasing
radiation intensity, the total scattering rate increases because of the increase in optical
absorption scattering for LO-phonon emission. In figure 8, the contributions due to different
optical processes are presented. From equation (22), we see that for LO-phonon emission
scattering,λ−(0) = 0 when mω < ωLO. Therefore, forω = ωLO/4, as shown in
figure 8, the process of LO-phonon emission via four-photon absorption does not give
rise to electron–photon–phonon scattering forK = 0. The increase in the total scattering
rate with the radiation intensity, shown in figure 8, results from the processes of absorption
of m > 4 photons.

Figure 7. The total electron–photon–LO-phonon scattering rate atK = 0 as a function of the
radiation intensity for different radiation frequencies.

The theoretical results shown in figures 5–8 indicate that the EPPR effect may be
observed in a polar semiconductor under intense EM irradiations with relatively low
radiation frequencies. Furthermore, the EPPR may occur via LO-phonon emission scattering
accompanied by multiphoton absorption.

5. Conclusions

In this paper, I have developed a novel theoretical approach in dealing with electron–photon–
phonon interactions in a 3DEG system under linearly polarized intense EM irradiations.
Applying the exact solution of the time-dependent Schrödinger equation, in the absence
of a scattering potential, to time-dependent perturbation theory, I have derived the unitary
operator in the presence of the scattering potential. From the unitary operator obtained, the
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Figure 8. The contributions from different optical processes to the total electron–photon–LO-
phonon scattering rate as functions of the radiation intensity for a fixed radiation frequency at
K = 0. Herem > 0 andm < 0 correspond, respectively, to the processes of photon absorption
and emission.

first-order steady-state transition probability for electron–photon–phonon interactions has
been obtained. Using this theoretical approach, the effect of the EM radiation field can be
considered more exactly and the effect of multiphoton processes on the interaction between
electrons and photons and that between electrons and phonons in an electron gas system
can be more easily and directly included. For the case of a polar semiconductor, I have
studied the electron–photon–phonon interactions via LO-phonon coupling. The dependence
of the electron–photon–LO-phonon scattering rate on the frequency and intensity of the EM
radiation has been examined. The main results obtained from this study are summarized as
follows.

For an ideal 3DEG subjected to an intense THz EM field, the electron–phonon inter-
actions can be accompanied by the emission and absorption of photons, and these optical
processes can be achieved via multiphoton channels. In this situation, the emission and
absorption of photons by electrons are indirect optical mechanisms mediated by phonon
scattering.

In the presence of a linearly polarized intense EM radiation, the electron–photon–phonon
interaction in a 3DEG system is anisotropic and depends strongly on the electron wavevector
(or momentum) along the direction in which the radiation field is polarized. From this result,
one would expect the conductivity tensors in this situation to also be anisotropic.

For polar semiconductors such as GaAs, the scattering channel for electron–photon–LO-
phonon interactions, via them-photon process, opens up when the condition ¯h2K2/2m∗ +
mh̄ω ± h̄ωLO is satisfied. In sharp contrast to the case where the EM field is absent, the
presence of the intense EM radiations can result in a strong LO-phonon emission scattering
even in theK → 0 limit due to the presence of the channels for optical absorption.

For a polar-semiconductor-based 3DEG, within theK → 0 limit, the electron–LO-
phonon emission (absorption) scattering can be achieved via absorption (emission) of
photons by an electron. In this situation, the electro-photon–phonon resonance (EPPR) may
be observed when the conditionmω ∼ ∓ωLO is satisfied. The numerical results obtained
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indicate that, for GaAs-based structures, the EPPR effect can be measured in intense laser
fields with relatively low frequencies, and the effect may be observed via multiphoton
channels.

The results obtained from the present study indicate that for a GaAs-based 3DEG system
under intense THz EM irradiations, the rate for electron–photon–LO-phonon scattering is
of the order of 1012 s−1, which is comparable to the radiation frequency. This implies that
in a THz-driven electron gas, the electron–photon–LO-phonon interaction is the principal
channel for excitation and relaxation of electrons in the system.

The strong influence of the intense THz EM radiations on electron–photon–phonon
interactions in a polar semiconductor can be understood by considering the fact that the
electron kinetic energy and the phonon energy in the system are comparable to the THz
photon energy. As a result, conditions such asr0qx ∼ 1 and 2(ω/ωLO)

2(E0/F0) ∼ 1 can be
satisfied, so the features specific to electron–photon–phonon interactions can be observed. It
should be noted that although normally the polaron electric field in a polar semiconductor is
very high (e.g., for GaAs,F0 ∼ 100 kV cm−1), the strong-polaron effect may be measured
by lowering the radiation frequency to match the above conditions.

In this paper, the calculations were carried out by considering linearly polarized EM
fields with the intensityE0 ∼ 10 kV cm−1 and the frequencyω/2π ∼ 1 THz. These
radiation conditions can be achieved through using recently developed free-electron laser
radiations. Hence, the effect of electron–photon–phonon interactions, discussed in this
paper, can be observed by measuring the non-linear response of a polar semiconductor device
to the frequency and intensity of the THz FEL radiations. Finally, the steady-state transition
rate for electron–photon–phonon interactions, obtained from this study, can be applied to
further calculations on transport and optical properties (such as the electron-energy-loss
rate and conductivity) of a THz-driven electron gas by using, e.g., the Boltzmann equation
approach or a Monte Carlo simulation [18]. However, this would require considerably more
analytical and numerical work, which is outside the scope of this paper.
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Appendix

As suggested by one of the referees for this manuscript, the first-order transition rate given
by equation (14) can also be derived by: (i) using the integral representation of theδ-function

δ(x) = lim
t→∞2

∫ t

0
dt ′ exp(−ixt ′) (A1)

where an infinitesimal quantity iδ has been implied to make the integral converge; (ii) noting
that the EM field can be included in the single-particle energies by introducing the vector
potentialE(K)→ E(K − eA(t)/h̄); (iii) generalizing theδ-function to

1[E(K)− E(K ′)± h̄ωLO]

= lim
t→∞2

∫ t

0
dt ′ exp

[
−i
∫ t ′

0
dt ′′ [E(K(t ′′))− E(K ′(t ′′))± h̄ωLO]

]
. (A2)

However, it should be noted that it is not so easy and direct to apply this simple and
phenomenological approach to the calculation of the high-order contributions.
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